Timothy Christian School

Entering 6 ${ }^{\text {th }}$ Grade Math Packet

First and Last Name:

Place Value

Directions: In the following problems, write the place of the underlined number.
Examples: 4.832 tenths
2228,927.803 ten thousands

1. 61.853 \qquad 2. $4 \underline{0} 5,678$
2. $98.00 \underline{1} 8$ \qquad 4. $238,970,245$ \qquad
3. 4, $\underline{0} 31$ \qquad 6. 12.32
4. 811.903 \qquad 8. $75,9 \underline{12}$
5. 561.892 \qquad 10. $14,005,678$ \qquad

Directions: In the following problems, write the number form of the word form given
Example: Two hundred twelve and three tenths $\underline{212.3}$

1. four hundred three million, seventy-one thousand, three hundred sixteen \qquad
2. nineteen and seven hundred thirty-four thousandths \qquad
3. three billion \qquad
4. three hundredths \qquad

Addition and Subtraction

Directions: Solve each problem and show your work.
\qquad

1. $\$ 323.41+\$ 49.87=$
2. $\$ 18,845.67+\$ 4,987.34=$ \qquad
3. $8005-4466=$ \qquad
4. $7004-1928=$ \qquad
5. $\$ 80.00-\$ 16.27=$ \qquad 6. $9,785+12,579=$ \qquad

Multiplication and Division

Directions: Solve each problem and show your work.

1. $534 \times 8=$ \qquad
2. $439 \times 73=$ \qquad
3. $456 \div 4=$ \qquad 4. $4914 \div 78=$ \qquad
4. $672 \times 89=$ \qquad 6. $567 \times 6=$ \qquad

Adding Fractions

Directions: Solve the problems and show your work. Make sure your answer is written in simplest form. Hint: Find a common denominator.

Example: $\frac{1}{4}+\frac{1}{4}=\frac{2}{4} \quad$ Would not be correct because $\frac{2}{4}$ is not in simplest form.

$$
\frac{1}{4}+\frac{1}{4}=\frac{1}{2} \text { Would be correct because } \frac{1}{2} \text { is in simplest form. }
$$

Example: $\frac{1}{2}+\frac{2}{2}=\frac{3}{2} \quad$ Would not be correct because it is an improper fraction.

$$
\frac{1}{2}+\frac{2}{2}=1 \frac{1}{2} \quad \text { Would be correct because it is a mixed number. }
$$

1. $\frac{1}{2}+\frac{1}{3}=$
2. $\frac{1}{4}+\frac{2}{5}=$
3. $\frac{3}{5}+\frac{7}{10}=$
4. $\frac{4}{9}+\frac{3}{6}=$
5. $\frac{3}{4}+\frac{1}{8}=$
6. $\frac{3}{4}+\frac{5}{12}=$
7. $2 \frac{3}{4}+5 \frac{3}{5}=$
8. $3 \frac{5}{12}+4 \frac{1}{4}=$

Multiplying Fractions

Directions: Solve each problem and write the answer in lowest terms.
Example: $\frac{1}{2} x \frac{2}{3}=\frac{2}{6} \quad \frac{2}{6}$ is not in lowest terms so your final answer needs to be $\frac{1}{3}$

1. $\frac{1}{2} \times \frac{1}{2}=$
2. $\frac{9}{9} \times \frac{1}{3}=$
3. $\frac{7}{8} \times \frac{2}{3}=$
4. $\frac{1}{2} \times \frac{2}{6}=$
5. $\frac{1}{2} \times \frac{3}{4}=$
6. $\frac{6}{6} \times \frac{4}{8}=$

Multiplying Mixed Numbers

Example: $2 \frac{3}{4} \times 3 \frac{1}{2}=$ First convert mixed numbers to improper fractions so that the problem becomes: $\frac{11}{4} \times \frac{7}{2}=\frac{77}{8}$ Convert your answer back to a mixed number: $9 \frac{5}{8}$

1. $1 \frac{1}{4} \times 2 \frac{1}{2}=$
2. $1 \frac{1}{3} \times 3 \frac{1}{2}=$
3. $3 \frac{3}{4} \times 1 \frac{1}{4}=$
4. $\frac{3}{4} \times 3 \frac{2}{5}=$

Greatest Common Factor

Directions: Find the Greatest Common Factor (GCF) for the numbers given. An example has been done for you.

Example: Find the GCF for 12 and 24 . First find the factors of each. The factors of 12 are 12x1, $\mathbf{2 x 6}, \mathbf{3 x 4}$. The factors of 24 are $\mathbf{1 x 2 4 ,} \mathbf{2 x 1 2 , ~ 3 x 8 , ~} \mathbf{4 x} 6$.

List the factors. $12: \mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{4}, \mathbf{6}, 12 \quad 24: \mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{4}, \mathbf{6}, \mathbf{8}, \mathbf{1 2}, 24$
Find the numbers that they have in common (the same). They have $\mathbf{1 , 2 , 3 , 4 , 6 , 1 2}$ in common. The GCF is the largest number they have in common. The GCF for $\mathbf{1 2}$ and $\mathbf{2 4} \mathbf{= 1 2}$
\qquad

1. 4,8
2. 5,10 \qquad
3. 12,20 \qquad 4. 14,16
4. 24,6 \qquad 6. 3,21 \qquad
5. 27,72 \qquad 8. 60, 96 \qquad

Prime and Composite Numbers

Directions: Write the letter \mathbf{P} next to the numbers that are Prime and the letter \mathbf{C} next to the numbers that are Composite.

Hint: Prime numbers only have two factors (the number itself and one.) Composite numbers have more than two factors. $\mathbf{1 7}$ is a prime number because the only factors of 17 are 1×17 (only two factors.) $\mathbf{1 4}$ is a composite number because the factors are 1×14 and 2×7. There are four factors. The numbers 0 and 1 are considered neither prime or composite. All even numbers (except 2) are composite. Odd numbers can be prime or composite.
\qquad

1. 4
2. \qquad 7
3. \qquad 24

$$
5 .
$$

8. \qquad 102
\qquad 87
9. \qquad 42
10. 47
11. \qquad 23
.
12.
13. \qquad 33
14. \qquad 21
15. \qquad 9

Order of Operations

Directions: Solve each problem according to the order of operations

Example: $15-3 \times 5=0$ The answer is not 60 . You need to solve the multiplication part of the problem before you solve the subtraction. This is the order of operations: PEMDAS Parentheses, Exponents, (Multiplication \& Division), (Addition \& Subtraction)

1. $15 \times(8-6)=\square$
2. $14-4 \times 3=$ \qquad
3. $3 \times(12-10)=$ \qquad 6. $5+3 \times 2-3=$ \qquad
4. $(4 \times 4)-7+3=$ \qquad 8. $(8 \times 6)+2=$ \qquad
5. $5+12 \times 2=$ \qquad
6. $100+6 \times 2=$ \qquad
